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Abstract. The construction of the Diracobservablesin the P 2 > 0 stratum for a system of
N relativistic free particles is carried out on the basis of aquasi-Shanmugadhasan canonical
transformation related to the existence of a Poincaré group action. The explicit form of the
Dirac observablesis derived by exploiting aninternal Euclidean group having the Poincaré
canonical spin as generator of rotations. This procedure provides thesymplectic versionof the
conventional angular momentum composition.

1. Introduction

It is generally recognized after Dirac [5] that the Hamiltonian description of the most
significant classical systems is based on a pre-symplectic co-isotropically embedded
submanifold of the standard phase space, i.e. a manifold equipped with a degenerate
two-form (in this paper we deal withfirst class constraints only). This entails that the
generalized Hamiltonian formalism includes the constraints which define the pre-symplectic
submanifold [6, 10, 9, 12, 33, 34, 7]. In particular, the Lagrangians of all the manifestly
covariant relativistic systems aresingular [34] and thesingular Legendre transformation
identifies only a submanifold of the cotangent bundle.

As far as classical physics is concerned, the fundamental issue is the construction of the
observablesfor the constrained system (the so-called Diracobservables) i.e. the functions
on the pre-symplectic manifold that are invariant under thegaugetransformations generated
by the constraints and thereby constant on thegaugeorbits that foliate the pre-symplectic
submanifold itself.

After Shanmugadhasan [31, 19]∗ a constructive method [19, 20] to find a complete
basis of Diracobservableshas been based on the existence of a specific set of canonical
transformations. Within a local chart of the 2M-dimensional phase space with coordinates
(qi, pi), covering a region of the pre-symplectic submanifoldγ defined bym < M first-
class constraintsφu(q, p) ≈ 0, (u = 1, . . . , m), canonical transformations(qi, pi) −→
‖ E-mail address: lucenti@mi.infn.it
¶ E-mail address: lusanna@vaxfi.fi.infn.it
+ Also at INFN, Sezione di Milano, Gruppo Collegato di Parma, Parma, Italy. On leave from Dipartimento di
Fisica, Universit̀a di Parma, Parma, Italy. E-mail address: pauri@pr.infn.it∗ Let us remark that the well known papers [35] and [36] about field theory, which contain the basic definition
of path-integral measure in phase space, are based on the existence of aguessedcanonical transformation, which
was shown by Shanmugadhasan to be actually existent, at least in a finite number of dimensions.
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(Qu, Pu,Q
v, Pv), (u = 1, . . . , m; v = 1, . . . ,M −m) always exist such thatPu ≈ 0 define

the same regionγ . One says that(Pu) is a local Abelianization of thefirst-classconstraints,
that(Qu) are the associated local Abeliangaugevariables (locally spanning the intersection
of the gauge orbits in γ with the given chart) and that(Qv, Pv) is a local complete
symplectic basis of ‘strong’Dirac observables(i.e. not only having zero Poisson brackets
with the constraints but also with the Abeliangauge variables). Therefore, locally, one
gets a separation betweenphysical (labelled byv) and gauge (labelled byu) degrees of
freedom. The local chart(Qv, Pv,Q

u) realizes a so-calledDarboux chart on the pre-
symplectic submanifoldγ . The existence of a Shanmugadhasan canonical transformation
for finite-dimensional systems is guaranteed by the Lie theory of function groups (fully
developed by Eisenhart [8]).

The main issue concerning classical relativistic systems in general (particles, strings
and field configurations) is whether they admit a class of Shanmugadhasan canonical
transformations that are definedglobally over the whole phase space or, at least, in
the neighbourhood of the pre-symplectic submanifoldγ . If a class of such global
transformations exists, and provided one forgets about the issue of manifest Lorentz
covariance, one obtains a globally defined separation of theDirac observablesfrom the
gauge sector of the theory, hence the possibility of reformulating the description of the
classical system in terms ofphysical quantities alone.

For many relativistic systems [20] (in particularparticles [17], Nambu string[2–4],
Yang–Mills fields with fermions[22]) the above procedure is feasible by exploiting the
Poincaŕe group and adapting the variables to its structure. Since this group is always
assumed to be globally implementable, its associated momentum map entails precisely the
existence of a global Shanmugadhasan canonical transformation.

In this paper we shall apply the Shanmugadhasan technique to the relativistic kinematics
of N free scalar particles described byN first-classconstraintsp2

ω −m2
ω ≈ 0, ω = 1 . . . N .

The constraint pre-symplectic submanifoldγ of every relativistic system is foliated instrata
[1] associated with the four types of Poincaré orbitsP 2 > 0,P 2 = 0,P 2 < 0,Pµ = 0. Each
stratum must be analysed separately since differentlittle-groups entail different adaptation
of variables. By restricting ourselves to the mainstratum (P 2 > 0) of the total momentum
Pµ = ∑

ω p
µ
ω , and exploiting the semidirect product structure of the Poincaré group, we

define a preliminarycentre-of-massdecomposition (see section 3). Therelative coordinates,
once boosted at rest by the standard Wigner boost technique for the relevant Poincaré orbits,
are split into arotational scalar(a relative time) and aWigner vector, in agreement with the
covariance properties under theSO(3) little-group group of the orbits. This is the first step
(adaptation of the coordinates to the Poincaré group) towards a Shanmugadhasan canonical
transformation. A second step is a nonlinear canonical transformation adapted toN − 1
suitable combinations of theN first-classconstraints. As a matter of fact, this is aquasi-
Shanmugadhasan canonical transformation, since onlyN − 1 of the new momenta vanish
under these constraints. The remaningfirst-class constraint may be put in the form of a
polynomial equation of order 2N in

√
P 2, whose solutions describe the 2N disjoint branches

of the mass spectrum of the system. Therefore 2N−1 different Shanmugadhasan canonical
transformations adapted to 2N−1 branch pairs are required. Note that this final canonical
transformation cannot be performed in general if interactions are present (except for the
special cases of Liouville integrability. See [21] for a more detailed description of the mass
spectrum). At the above stage of thequasi-Shanmugadhasan transformation, one of the
canonical variables is the square root of the first Poincaré invariant,

√
P 2. For P 2 > 0 the

second Poincaré invariant isW 2 = −P 2S2 (whereS is the rest-frame Thomas canonical
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spin) and one should take into account the spin–orbits corresponding to bothS2 6= 0
andS2 = 0. In this paper, we shall deal with the main stratum of orbitsS2 6= 0 only,
using the constructive theory of the canonical realizations of Lie groups [24–28]. We look
for coordinate charts simultaneously adapted to the constraint manifoldand to the group
structure. The adaptation of the coordinates is obtained by means of a homeomorphism
between a subset of thequasi-Shanmugadhasan chart and the orbits of the co-adjoint action
of the Poincaŕe group (see section 4). In particular, the canonical transformation of the
relative variables is constructed in such a way that|S| becomes one of the new canonical
momenta. In this way, the Darboux chart contains atypical chart (in the sense of [24–28])
on the orbits of the co-adjoint representation of the Poincaré group and both of the Poincaré
invariants appear in the final canonical basis.

Let us stress that there is a number of motivations for constructing this canonical
basis. First of all in the case of special-relativistic systems, the pre-symplectic manifold
equipped with the closed degeneratedtwo-form must always admit a global pre-symplectic
implementation of the Poincaré group. Unfortunately, the studies on pre-symplectic
geometry turn out not to be as fully developed as those on other structures: for instance,
Poisson manifolds (i.e. theduals of pre-symplectic manifolds) have been deeply explored
because of their relevance in many sectors of mathematical physics. Therefore, there is a
surviving need to develop all the mathematical tools that can be instrumental to the analysis
of special-relativistic physical systems with constraints.

As shown in [21], there are several related physical motivations for deepening the
understanding of these canonical bases. (i) The need to take into account from the
beginning the decomposition of the space of solutions of the physical system in thestrata
corresponding to the various types of Poincaré orbits; note that this decomposition is
well known in field theory but it is never really used in applications. (ii) The unsolved
problem of relativistic bound states: since the states of Fock space are tensor products of
single-particle states, there is no control on the relative times of thein–out particles, a
fact that is reflected in the spurious solutions of the two-particle Bethe–Salpeter equation.
These solutions are excitations of the relative energy, namely the variable conjugated
to relative time (incidentally, this was the main motivation for finding the canonical
transformation (15)). (iii) The actual impossibility of formulating three (orN > 3) first-
classconstraints describing interactions among three (orN > 3) scalar particles having the
cluster decomposition property in closed form [38, 39] (again a big obstacle in the presence
of relative time). Finally: (iv) a related problem is the impossibility of finding the branches
of the mass spectrum forN > 3 (either free or interacting) particles, since one needs to
solve algebraic equations of higher order. A thorough dicussion of these kinematical issues
can be found in [21]. There,N free scalar particles are first analysed along the lines of our
section 2. Then, this system is reformulated on spacelike hypersurfaces foliating Minkowski
spacetime (following Dirac [5]): this reformulation forces one to choose the sign of energy
for each particle since the position of a particle on such a hypersurface is identified by
three numbers only (all the particles share the sametime of the hypersurface). Hence,
there are 2N different Lagrangians corresponding to all possible choices. After that, the
description is restricted to spacelike hyperplanes and, finally, the configurations belonging
to the main stratumP 2 > 0 are described on the special family of hyperplanes orthogonal
to the total momentumPµ. Each hyperplane is intrinsically determined by the physical
system as its rest frame. The final outcome of this analysis is a new kind ofinstant form,
actually therest-frame instant form, characterized by Wigner covariance. This realizes the
relativistic separation between thecentre-of-massand relative motionsand allows us to
determine the form of the branches of the mass spectrum. In [21] it is also shown that the
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equal-time variablesfor theN particles (equal with respect to the Lorentz-scalarrest-frame
time) are the same as the subset of relative variables that one obtains in the usualN-times
formulation, after the canonical transformations leading to our equation (21). Finally, it is
shown there that: (i) in the rest-frame hyperplane, a Euclidean kinematical group naturally
appears (the Lorentz boosts are implemented as Wigner rotations) and, above all: (ii)
action-at-a-distance interactions can be introduced in such a way that the problem of cluster
decomposition reduces to the analogous problem in Newtonian mechanics. Furthermore, a
system ofN charged scalar particles plus the electromagnetic field is described on spacelike
hypersurfaces and then reduce to therest-frame instant form.

In conclusion, the mathematical tools developed in this paper can hopefully be exploited
in this newrest-frame instant formof dynamics in order to investigate unexplored aspects
of spin dynamics. As a matter of fact,our procedure provides the symplectic version
of the conventional angular momentum composition. The method of using aquasi-
Shanmugadhasan canonical transformation to obtain Diracobservablesin a stratum of
the Poincaŕe group seems to be a powerful and new technique. As we shall see, these new
canonical bases may be called‘spin bases’ legitimately, since they describe, at the same
time, thealgebraic and thegeometricaspects of the composition of classical spins (angular
momenta in thecentre-of-mass frame). In particular, our choice of the Poincaré invariants
P 2 andW 2 (i.e. the total invariant mass and angular momentum) as canonical variables
(see for example table 5) is theonly choiceof Poincaŕe invariants that can survive in the
interacting case where individual particle Poincaré invariants are no longer constants of the
motion. Finally, these‘spin bases’seem likely to provide an important tool in the study of
the Nambu string [2] and in classical field theory.

After some preliminary sections, in section 5, starting from thequasi-Shanmugadhasan
transformation, we rearrange thephysical relative variablesfor a two-particle system in
a typical form [24] of the canonical realizations of theE(3) group, which turns out to
be instrumental for the extension of our construction to systems with a number of particles
higher than two. By adapting the chart of thephysical relative variablesπ andρ to theE(3)
group, we are automatically led to introduce the second Poincaré invariant as a canonical
variable and we finally get the main result: a chart that embodies both the Poincaré group
structureand the constraint structure.

In section 6, starting again from the quasi-Shanmugadhasan transformation, we build
up the same construction for a three-particle system. Due to the greater number of degrees
of freedom, the procedure is, of course, more cumbersome. The geometry of thephysical
relative variables is characterized by fourWigner vectorsπω and ρω (ω = 1, 2). By
independently transforming the two pairs (π1, ρ1) and (π2 , ρ2) as in section 5, we obtain a
typical formof E(3) based on the vectorS = S1+S2 as generator of the ‘internal’ rotations.
The presence ofS as a generator is actually the key factor, since in this way we succeed
in adapting thephysical relative variablesto the chosen ‘internal’E(3) group,and, at the
same time, to the Poincaré group, by enrolling the spin invariant as a canonical coordinate.
Actually, this method provides the basis for the construction of the‘spin bases’for a system
of N particles. In section 8 the constructive method is first naively applied to a system
of N particles starting from thequasi-Shanmugadhasan transformation given in section 3,
looking for a chart adapted to the Poincaré group. Instructed by the results of section 6,
we obtainchains of canonical transformations matching a set of canonical subrealizations
of the E(3) group, labelled by particle indices. The canonical transformation that leads
to the chart adapted to the Poincaré group clearly depends on the combinatorial character
of the matching (in some sense, this can be said to be the classical analogue of the spin
composition in quantum mechanics). On the other hand, in section 7, it is shown how
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to invert the canonical transformation that adapts the chart to the Poincaré group and the
geometricmeaning of therelative canonical variablesis made fully transparent.

2. N -particle constraint theory

As shown by Komar [13–15], a system ofN relativistic scalar particles can be described
via constraint theory by introducing eight, instead of six, phase-space variables for each
particle, namely (µ = 0 . . .3;ω = 1 . . . N):

{xµω , pµω} (1)

satisfying the usual Poisson algebra

{xµω , pνω′ } = δµν δωω′ . (2)

In the case of free particles, theN first-classconstraints (c = 1):

χω ≡ p2
ω −m2

ω ≈ 0 (3)

define a pre-symplectic submanifoldMc (co-isotropically embedded in the phase space [10]).
The constraint vector fieldsYω = {·χω} generate both the dynamics and thegaugeorbits
on Mc since the canonical Hamiltonian is identically zero. The dynamical evolution is
ruled by theDirac HamiltonianHD =

∑
ω λω(τ)χω (with λω(τ) arbitrary multipliers). The

Hamilton–Dirac equations imply, for each particle:

pω = const p0
ω = ±

√
m2
ω + p2

ω

xµω (τ) = xµω (0)+ pµω
∫ τ

0
dτ ′λω(τ ′).

(4)

These equations provides the manifestly covariant description of the(ω)th individual
worldline. In order to reduce the remaining seven degrees of freedom for each particle
to the six Cauchy data, one has to further reduce the phase space by taking the quotient of
Mc with respect to thegaugefoliation generated by the vector fieldsYω. On the other hand,
within the constraint manifoldMc, the relative time among the particles is not restricted
and each particle retains seven degrees of freedom, one of which is related to a temporal
variable (x0

ω). Theχω’s in equations (3) are indeed the generators of the reparametrization
invariance transformations on each worldline. From a physical point of view, this means
that we have the freedom to define either the ‘individual clocks’ measuring the time of
each particle or aglobal time andN − 1 ‘relative clocks’. This situation reminds us of
the time-diffeomorphism invariance in general relativity where, again, thegauge freedom
corresponds to the choice oflocal clocks. Finally, the assumed global action of the Poincaré
group onM is generated by

Pµ =
∑
ω

pµω Jµν =
∑
ω

(xµωp
ν
ω − xνωpµω) (5)

while the Poincaŕe invariants are

P 2 W 2 = −P 2S2 (6)

where S2 ≡ |S|2 = −WµWµ

P 2 ,Wµ = 1
2ε
µνρσ JνρPσ . Mc is a stratified manifold whose

strata are identified by the allowed Poincaré orbits defined byP 2, and has 2N disjoined
components (each particle having its past and future hyperboloids). We shall study the main
stratumP 2 > 0.
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3. The Shanmugadhasan transformation

For a single particle with coordinates(xµ, pµ) one can perform the following canonical
point (in pµ) transformation[16] (i = 1, 2, 3):

ε = ηM T = ηp·x
M

ki = ηp
i

M
zi = ηM

(
xi − pi

p0x
0
) (7)

whereη = ±,M =
√
P 2, so that the constraintχ ≡ p2−m2 ≈ 0 becomes

χ = ε2−m2 ≈ 0. (8)

In this case, the manifoldMc has two disjoined components and therefore, settingε −→
ε′± = ε ± m, two Shanmugadhasan canonical transformations (SCT) can be defined. The
physical meaning of the variables in equations (7) is the following:
• T is the time measured in the rest frame (centre-of-momentum) of the particle;
• ki is the spatial part of the four-velocitykµ = ηpµ

M
(with k0 = (1+ k2)1/2 or k2 = 1);

• zi , modulo a mass factor, are the Cauchy data of the initialposition.
The canonical pairT , ε = −1 describes thegauge sector. The constraint (8) fixes the

value of ε on the physical manifold, while theT variable remains arbitrary. Itsgauge
fixing corresponds to the freedom of arbitrarily choosing the timescale (thegauge fixingis
equivalent to a definition of the overall clock). The Poincaré generators

Pµ = pµ J k = 1
2ε
ijkzikj J i0 = k0zi J ij = zikj − zj ki (9)

are functions of the variables of thephysical sector(observables). Under the Poincaré
transformation(a,3), the variables defined in equations (7) transform as (see [16]):

T ′ = T + kµ(3−1a)µ ε′ = ε

z′i =
(
3i
j −

3i
µk

µ

30
νk
ν
30
j

)
zj + ε

(
3i
µ −

3i
νk
ν

30
ρk
ρ
30
µ

)
(3−1a)µ

k′µ = 3µ
ν k

ν.

(10)

Note thatzi are in fact the (non-covariant) Newton–Wigner position variables [23].
For a system ofN particles, a SCT must be carried out for each disjoined component of

Mc. While this can be easily done forN free particles, the feasibility of the transformation
in the presence of an interaction depends upon the Liouville integrability of the interacting
system. It is possible, however, to define anintermediateSCT (called henceforthquasi-
Shanmugadhasan canonical transformation) characterized by the fact that thegaugesector
is separated out, even though the incomplete resolution of the constraints forbids an explicit
inversion of the transformation (see [17, 19–21]).

The first step towards the construction of thequasi-SCT is the definition of apreliminary
canonical transformation of the form (ω = 1, . . . , N; a = 1, . . . , N − 1):

xµ =
∑

ω γ̂ωx
µ
ω√

N
Pµ =∑ω p

µ
ω

Rµa =
√
N
∑
ω

γ̂aωx
µ
ω 5

µ
a = 1√

N

∑
ω γ̂aωp

µ
ω

(11)

whereγ̂ = 1√
N

( 1
. . .

1

)
, andγ̂a = (γ̂aω) constitute an orthonormal basis of theN -dimensional

Euclidean space(γ̂ 2 = 1, γ̂ 2
a = 1, γ̂ · γ̂a = 0, γ̂a · γ̂b = δab, γ̂ωγ̂ω′ +

∑
a γ̂aωγ̂aω′ = δωω′).
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The inverse transformation is (ω,ω′ = 1, . . . , N; a = 1, . . . , N − 1):
xµω = xµ +

∑
a γ̂aωR

µ
a√

N

pµω =
1

N
Pµ +

√
N
∑
a

γ̂aω5
µ
a

(12)

so that the constraints of equation (3) can be replaced by
χ = N

∑
ω

χω = P 2−N
∑
ω

(m2
ω −N

∑
a,b

γ̂aωγ̂bω5a ·5b)

χa =
√
N

2

∑
ω

γ̂aωχω = P ·5a −
√
N

2

∑
ω

γ̂aω(m
2
ω −N

∑
b,c

γ̂bωγ̂cω5b ·5c).

(13)

The Poincaŕe generators become

Pµ, Jµν = Lµν + Sµν
Lµν = xµP ν − xνPµ
Sµν =

∑
a

(Rµa 5
ν
a − Rνa5µ

a ).

(14)

A second step, which simplifies the expression of the constraints, consists in performing
a further canonical transformation as follows†:

x̂µ = xµ +
∑
ω

1

2P 2
(m2

ω − (pω − γωP ) · (pω − γωP ))

×
(
xµω − xµ −

(∑
ω′

γ 2
ω′

P · pω′
)−1∑

ω′′

γ 2
ω′′

P · pω′′
(
P · rωω′′
P · pω (p

µ
ω + γωPµ)

−
∑
ω′

P · rω′ω′′
P · pω′ γω

′p
µ

ω′

))
Pµ =

∑
ω

pµω

R̂µa =
√
N
∑
ω

γ̂aω

(
xµω +

(∑
ω′

γ 2
ω′

P · pω′
)−1∑

ω′′

γ 2
ω′′

P · pω′′
P · rωω′′
P · pω · (p

µ
ω + γωPµ)

)
5̂µ
a =

1√
N

∑
ω

γ̂aω

(
Pµω +

Pµ

2P 2

√
N(m2

ω − (pω − γωP ) · (pω − γωP ))
)

(15)

whererµωω′ = xµω − xµω′ . Then theN − 1 constraintsχa (see equation (13)) can be rewritten
in the expressive form:

χa = P · 5̂a ≈ 0. (16)

Note that, forN > 2, the transformation (15) cannot be inverted explicitly (see [17, 21])
(for N particles one would have to solve an algebraic equation of order 2N−1). Now, the
Poincaŕe generators are

Pµ, Jµν = L̂µν + Ŝµν
L̂µν = x̂µP ν − x̂νP µ
Ŝµν =

∑
a

(R̂µa 5̂
ν
a − R̂νa5̂µ

a ).

(17)

† Remember thatγω ’s are equal to 1√
N

.
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The final step in the construction of thequasi-SCT is achieved in the following way:
(i) first, the relative variables are boosted to thecentre-of-massrest frame (P = 0)

(a = 1, . . . , N − 1): r
A
a = LAµ(

0
P , P )R̂µa

qAa = LAµ(
0
P , P )5̂µ

a

(18)

by means of the Wigner boost

Lµν (P,
0
P) = ηµν + 2

Pµ
0
P ν

P 2
− (P +

0
P)µ(P +

0
P)ν

(P +
0
P) · P

0
Pµ ≡ (η

√
P 2, 0, 0, 0) (19)

(ii) second, the centre-of-mass coordinates are modified as:

x̄µ = x̂µ − 1

ε(ε + P0)

(
PνŜ

νµ + ε
(
Ŝ0µ − Ŝ0ν PνP

µ

ε2

))
(20)

and then transformed as in equation (7).
Explicitly, the quasi-SCT is given by (see [17]) (a = 1, . . . , N − 1):

T = 1

N

∑
a

Ta = ηP · x̄
M

ε =
∑
a

εa = ηM

zi = ηM
(
x̄i − pi

p0
x̄0

)
ki = ηp

i

M

τa = ηP · R̂a
M

εa = ηP · 5̂a

M

ρia = R̂ia −
P i

M

(
ηR̂0

a −
P · R̂a
M + ηP0

)

πia = 5̂i
a −

P i

M

(
η5̂0

a −
P · 5̂a

M + ηP0

)
.

(21)

The variables (21) are reproduced in theschemeof table 1: canonically conjugated variables
are aligned in the same column. Thegaugesector lies to the right of thephysical sector.
On the other hand, thecentre-of-massvariables appear in the upper part and therelative

Table 1. Quasi-SCT transformation for a system ofN particles: chart partially adapted to the
constraint structure (a = 1, . . . , N − 1).

k ε = η
√
P 2

z T

πa εa
ρa τa
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variables in the lower one. The Poincaré generators can be rewritten in the form

Pµ = εkµ
J ij = zikj − zj ki +

∑
a

S̄ija S̄
ij
a = ρiaπja − ρjaπia

J i0 = k0zi +
∑
a

S̄ika k
k

1+ k0
.

(22)

The quasi-SCT, summarized in table 1, defines a chartadaptedto the constraint structure
of the theory. The constraints, expressed in the new coordinates, take the form (a =
1, . . . , N − 1):{

χ = F(P 2 = ε2, mω,πa · πb) ≈ 0

χa = εεa ≈ 0
(23)

whereF(·) is a polynomial of order 2N−1 in P 2 whose explicit form can be exhibited only
if the canonical transformation (15) can be inverted in a closed form (essentially, one has
to solve the system of theN − 1 equations

P · 5̂a = P ·5a −
√
N

2

∑
ω

γ̂aω

(
m2
ω −N

∑
b,c

γ̂bωγ̂cω

(
P ·5bP ·5c

P 2
− Π̂b · Π̂c

))
(a = 1, . . . , N − 1)

to obtainP ·5a in terms ofP ·5̂a and ofΠ̂b ·Π̂c. HereΠ̂a is the space part of5µ
a defined

in equation (11), taken after having boosted it to thecentre-of-massframe (P = 0)). Note,
in addition, that the Wigner boost splits therelative variables inrotational scalarsτa, εa
and inWigner vectorsρa, πa, (see [21] for a more detailed discussion of this kinematical
setting; the variableŝxµ, R̂µa , 5̂

µ
a , x̄

µ, T ,ρa, τa,πa, εa of this paper are denoted in [21] by
x̂µ, R̂

µ
a , Q̂

µ
a , ˆ̃x

µ
, T̂ , ρ̂a, T̂Ra, π̂a, ε̂Ra, respectively).

Since the evolution in an arbitrary parameterτ is ruled by the Dirac Hamiltonian
HD = λ(τ)χ + ∑a λa(τ )χa, it is seen that onlyx̄µ has its four-velocity parallel to
the total four-momentum: d

dτ x̄
µ = {x̄µ,HD} = 2λ(τ) ∂F

∂P 2P
µ. On the other hand, from

d
dτ x

µ = λ(τ){xµ, χ} +∑a λa(τ ){xµ, χa} and d
dτ x̂

µ = λ(τ){x̂µ, χ} +∑a λa(τ ){x̂µ, χa}, it
follows that xµ and x̂µ exhibit a motion with respect tōxµ, which we shall denominate
pseudo-Zitterbewegung. In general, this phenomenon naturally arises from the conjunction
of the requirements that a ‘position’ dynamical variable be at the same time canonical
and relativistically covariant. As is well known, only three different ‘position’ dynamical
variables can be defined within theirreducible realizations of the Poincaré group (namely
the Moeller, the Fokker and the Pryce–Newton–Wigner three-vectorcentres of mass) but
none of these is at the same time canonical and covariant. If, however, one is not
restricted to Poincarè algebra generators alone and extra degrees of freedom are allowed,
an indefinite number of ‘position’ dynamical variables can be constructed (see the relevant
references in [29, 30]). In particular, a Dirac-like canonical and covariant three-vector
position variablex(t) can be constructed (in theinstant form) in the case of thereduced
two-particle model (pole–dipoleof [29, 30]) in terms of the Poincaré generators and of
an additionalinner angular degree of freedom canonically conjugated to the magnitude
of the intrinsic angular momentum. The time derivative of this vector is not parallel to
the total momentum so that it undergoes an helicoidal motion which can safely be called
a classicalZitterbewegung. On the other hand, in the context of this paper, the extra
degrees of freedom belong to thegaugesector, so that the canonical and covariant position
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vector x̂ (see section 3) is, necessarily, only partially adapted to the constraints. Relative
to the Fokker three-vectorXF = −KP0

+ S̄∧P
εP0

, interpreted as ageometric(covariant but
non-canonical)centre of mass, x̂ undergoes a motion that can be seen as ‘internal’ with
respect to the particle system as a whole. The terminology ofpseudo-Zitterbewegung
in this case appears to be justified by the usage already established in the literature†
and by the fact that|x̂ − XF | has a typical relation with the invariants of the ‘spin’
Lorentz group (precisely, in the case of two particles, in the rest frameP = 0, one has‡
|x̂ −XF |P=0 = 1

ε
(T̄ 2
Rπ

2 + ε̄2
R[(ρ·π

π
)2 + S2

π2 + 2T̄Rε̄R
ρ·π
π
π)1/2 =

√
S2−I1

ε
, whereI1 is the

Lorentz invariant 1
2S

µνSµν ). Finally, it is obvious by construction that all the position
variables we take into account, in the non-relativistic limit and when evaluated at the same
time, reduced to the standard Newtonian centre of mass. These issues will be exhaustively
discussed elsewhere.

Under thequasi-SCT, the centre-of-masscoordinates have also been automatically
adapted to the co-adjoint orbits of the Poincaré group and the invariantP 2 now appears
among the canonical variables. However, the second invariant of the Poincaré group, namely
the Pauli–Lubanski invariant (see (9)),

W 2 = −P 2S2 (Si = εijk
∑
a

S̄jka ) (24)

is not enrolled among therelative canonical variables and the canonical realization of the
Poincaŕe group has not assumed, as yet, atypical form§. The completion of our programme
demands adapting all of the coordinates to the co-adjoint action of the Poincaré group: this
requires in turn that therelative variables be adapted to theSO(3) group, which is the small
group of the orbits we are analysing.

The basic tool for realizing this step is provided by the constructive theory of the
canonical realizations of Lie groups sketched in the following section. It will appear that
exploiting the geometricaland group properties of therelative physicalvariables needs the
implementation of asecond-rankgroup containingSO(3) as a proper subgroup, such as
E(3), SO(3, 1) or SO(4).

4. Canonical realizations of a Lie group

Let M be a symplectic manifold and8 the action of the Lie groupG onM:

8 : G×M → M. (25)

It can be shown that it is possible to construct a peculiar class of local charts onM by
exploiting the local homeomorphism existing between a submanifold ofM and the co-
adjoint orbits onG∗ (dual of the Lie algebraG of G) [1, 24, 32]. Each chart belonging to
the above class, characterized by it being adapted to the group structure, is calledtypical
form.

According to the general theory [24], a canonical realizationK of a Lie groupGr (of
order r) can be characterized in terms of two basicschemes: (A) the scheme Awhich
depends entirely on the structure of the Lie algebraLGr

(including its cohomology) and
amounts to apseudo-canonizationof the generators, in terms ofk invariantsJ1 . . .Jk and
h = (r − k)/2 pairs of canonical variables (irreducible kernel of the scheme), functions

† See for instance the terminology adopted in [37] in connection with the position operator for the field
configurations in the Klein–Gordon case.
‡ See section 5 for the definition of the variables.
§ See section 4.
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of the generators; (B) thescheme B(or typical form) which is an array of 2n canonical
variablesPi ,Qi , defined by means of acanonical completionof the scheme A. Locally,
scheme Ballows us toanalyseany given canonical realization ofGr and toconstruct the
most general canonical realization ofGr .

A genericscheme Acan be usefully visualized by the following table:

P1 . . . Ph J1 . . . Jk
Q1 . . . Qh

(26)

where variables belonging to the same vertical pair are canonical conjugated, and variables
belonging to different vertical lines commute. The quantitiesJi clearly commute with
all of the generators and are theinvariants of the realization. Of course, any set ofk
functional independent functionsJ ′1(J1, . . . ,Jk), . . . ,J ′k(J1, . . . ,Jk) of the invariants are
good invariants as well. Ascheme Ais calledsingular if, due to some functional relations,
already existing or imposed, among theinvariants, some canonical pairs become singular
functions of the generators and must be omitted fromscheme Aitself which, then, has to be
redetermined from the beginning. In this case, the number ofcanonical pairsmay result in
m < h.

The scheme B, i.e. thecanonical completionof scheme A, is accomplished in general
according to one of the following possibilities.

Type 1.No new variable is added toscheme Aandk independent functions of thecanonical
invariants are put identically equal to constants. 2h typical variablesPi , Qj are identified
with the variables of theirreducible kernel. The explicit expression of the canonical
generators, in terms of thePi ,Qj of scheme B, is obtained by inverting the functions
of scheme A. Then, an arbitraryfixed (with respect to the group parameters) canonical
transformationS gives the expression of the generators in terms of 2h generic canonical
variablepi , qj . Since, in this case, the phase space contains no submanifolds invariant
under the action ofGr , these realizations are calledirreducible (i.e. transitive), for any
k-tuple of allowed constant values of the functions of the invariants.

Type 2. A certain numberl (l 6 k) of canonical variablesQs (called supplementary
variables) turn out to be coupled or are axiomatically coupled, tol of the invariantsJi ,
building up l new canonical pairs, whilek − l independent functions of theinvariants are
put identically equal to constants. Then, the generators, as functions of thetypical variables
Pi,Qi, Ps(i, j = 1, . . . , h; s = 1, . . . , l), are obtained by inversion as before but do not
depend on thesupplementaryvariablesQs . The phase space, in this case, is 2h + 2l
dimensional and, containing the submanifoldsJt (p, q) = constant(t = 1, . . . , k − l) as
invariant submanifolds, corresponds tonon-irreducible(i.e. intransitive) realizations for any
(k−l)-tuple of allowed constant values of the invariant functions that have been constrained.
A particular case of type 2 is the so-calledcompleterealization, corresponding tol = k and
(r + k)/2 canonical pairs. This realization is completely determined, locally, by the group
structure. In geometrical terms, the variables of theirreducible kernel, together with thek
supplementaryvariables, define a local chart on the orbits of the co-adjoint representation
of Gr .

Type 3.An arbitrary numberv 6 n−h of pairs of canonical variablesQu, Pu(u = 1, . . . , v)
(inessential variables) turn out to exist or are axiomatically added toscheme A. These
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variables are not canonically coupled toinvariants nor do they share any functional relation
with the variables ofscheme A, so that they commute with all the variables considered
up to now. Then, one proceeds, as for type 1 and type 2, by inverting the functional
dependence of thetypical variables on the generators and performing an arbitraryfixed
canonical transformation which leads to the generic form of the realization in terms of 2n

canonical variablespi , qj . Since theinessentialvariables define invariant submanifolds in
phase-space, these realizations arenon-irreducible(i.e. intransitive). Note that types 1-and-
3, or 2-and-3, are mutually compatible.

A priori, we are interested in the rotation groupSO(3), the Poincaŕe group, and the
rank-2 groupsE(3), SO(3, 1) andSO(4). Their schemesA have the following structure.

SO(3). The Poisson bracket algebra (PBA) and theschemeA are

{Si, Sj } = εijkSk (27)

and

P1 = S3 J1 =
√
(S1)2+ (S2)2+ (S3)2 ≡ S

Q1 = arctanS
2

S1

(28)

respectively.

T 4
_×SO(3, 1) (Poincaré group). The generators are:J rotations,K special Lorentz

transformations,Pµ = (P0,P ) spacetime translations. The PBA is

{Ji, Jj } = εij kJk {Ki,Kj } = −εij kJk
{Ji,Kj } = εij kKk {Ki, Pj } = −δijP0

{Ji, Pj } = εij kPk {Ki, P0} = −Pi
{Ji, P0} = 0 {Pi, P0} = 0

{Pi, Pj } = 0

(29)

and theschemeA for theP 2 > 0 class can be written as

P = P P4 = S3 J1 = S J2 = M
Q = −K

P0
+ S ∧ P
P0(P0+

√
5)

Q4 = arctanS
2

S1
(30)

where 
M2 = P 2

0 − P 2

Si = P0√
5
J i + (K ∧ P )

i

√
5

− J · P√
5(P0+√π)

P i

S =
√
(S1)2+ (S2)2+ (S3)2.

(31)

The rank-2 groupsE(3), SO(3, 1) andSO(4) have the following PBAs:

E(3).

{Si, Sj } = εijkSk {Si, Rj } = εijkRk {V i, Rj } = 0 (32)
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SO(3,1).

{Si, Sj } = εijkSk {Si, Rj } = εijkRk {Ri, Rj } = −εijkSk (33)

SO(4).

{Si, Sj } = εijkSk {Si, Rj } = εijkRk {Ri, Rj } = εijkSk (34)

while the correspondingschemesA can be given the unique form

S3 S I1 I2

tan−1 S2

S1 α = tan−1 S(S∧R)3
[S∧(S∧R)]3

(35)

provided theinvariants are defined as

I1 = R ·R I2 = R · S
I1 = S2−R2 I2 = R · S
I1 = S2+R2 I2 = R · S

(36)

respectively, in the three cases.

5. System of two particles

The simplest model in which both the constraintsand the canonical group structure can be
significantly exhibited is provided by a system of two particles. Table 2 summarizes the
quasi-SCT in this case.

As anticipated at the end of section 3, the next step in the construction of the final basis
consists of adapting therelative physicalvariables(ρ,π) not only to the smallSO(3) group,
but rather to a largersecond-rankgroup. In what follows we shall exploit the Euclidean
groupE(3) since its Abelian invariant subgroup is particularly suited to be realized in terms
of the ‘internal’ relative variables, and the role of the Abelian subgroup is a key factor to
the whole construction.

First of all, the vectorsρ andπ are replaced by the scalarradial variables†

π ≡
√
π2 ρ · π̂ (37)

and the new vectors (i, j = 1, 2, 3)

π̂ i ≡ πi

π
ξ i ≡ πρi⊥ ≡

√
π2(δij − π̂ i π̂ j )ρj (π̂ · ρ⊥ = 0) (38)

so that the canonical spin can be written:

S = ρ ∧ π =
√
π2ρ⊥ ∧ π̂ = ξ ∧ π̂ . (39)

Then, we obtain an explicit expression of theirreducible kernel of the scheme(35) by
realizing the vectorR simply as

R̂i = π̂ i . (40)

Since{π̂ i , π̂ j } = 0, S · π̂ = 0 andπ̂ · π̂ = 1, this automatically implements a realization of
the Euclidean groupE(3), characterized by the fixed valuesI1 = R·R = 1, I2 = R·S = 0

† For any vectorV , the expression̂V meansV
V

throughout the paper.
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Table 2. Quasi-SCT for a system of two particles: chart partially adapted to the constraint
structure.

k ε = η
√
P 2

z T

π εR
ρ τR

of the invariants, and by a functional form of the variable canonically conjugated toS given
by†:

α = tan−1 1

S (π
2 ρ

3

π3
− ρ · π) = tan−1 1

S
ξ3

π̂3
. (41)

Note that the following formulae hold true:

∂R̂(α)

∂α
= R̂(α + π

2
) = SS ∧ R̂(α) (42)

and 

R̂1 = S2√
S2− (S3)2

sinα − S1S3

S
√
S2− (S3)2

cosα

R̂2 = S1√
S2− (S3)2

sinα − S2S3

S
√
S2− (S3)2

cosα

R̂3 =
√
S2− (S3)2

S cosα

(43)

so that the inverse transformation of therelative variables can be written:
πi = πR̂i(S, α)

ρi = π · ρ
π

R̂i(S, α)+ S
π

(R̂(S, α) ∧ S)i
S .

(44)

Finally, owing to the Poisson bracket relations:

{Si, π} = {Si, ρ · π̂} = 0 {α, π} = {α, ρ · π̂} = 0 (45)

and

{ρ · π̂ , π} = 1 (46)

it follows that theE(3) canonical realization has theradial variables asinessentialvariables
and therefore is anon-irreduciblecanonical realization of type 3 (see section 4), summarized
in table 3. Since now the Poincaré invariantS has been enrolled as a canonical variable,
the adaptation to the Poincaré group is complete. Table 4 summarizes thetypical form of
the Poincaŕe realization, displaying the same distinctions made before betweengaugeand
physical variables as well as betweencentre-of-massand relative variables.

† Of course the superscripts 3 in the following expressions means ‘third component of a three-vector’. Its geometric
meaning is shown in figure 1.
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Table 3. System of two particles:relative physicalvariables adapted to the internalE(3) group.

S3 S R2 = 1 R · S = 0 π

tan1− S2

S1 α
π·ρ
π

Table 4. System of two particles: chart adapted to the constraint structureand to the Poincaŕe
group.

k1 k2 k3 ε = η
√
P 2

z1 z2 z3 T

S3 S π εR

tan−1 S2

S1 α
π·ρ
π

τR

Note that the vectorsS,R,S ∧ R define a right-handed orthogonal reference frame
(see figure 1) and satisfy the following peculiar algebraic relations:

{Si, Sj } = εijkSk {Ri, Rj } = 0 {Si, Rj } = εijkRk
{(S ∧R)i, Sj } = εijk(S ∧R)k
{(S ∧R)i, (S ∧R)j } = −R2εijkSk

{(S ∧R)i, Rj } = RiRj − R2δij .

(47)

6. The system of three particles as a canonical realization of the Euclidean group
E(3)

The simplest model in which both the constraintand the Poincaŕe group structures are
substantially exploited, and the Euclideansecond-rankgroup plays an effective instrumental
role, is provided by a system of three particles. The initial scheme is given in table 1.
According to our programme, we have to adapt therelative physicalvariables(ρia, π

j
a ), (a =

1, 2) to theE(3) co-adjoint orbits. Since variables with different particle labels commute,
table 1 can be rewritten as the ‘direct product’ of twoE(3) realizations constructed as in
section 5. In fact, we have now apair of commuting reference frames defined by the two
sets ofE(3) generators, namely:

R̂1,S1, Ŝ1 ∧R1 and R̂2,S2, Ŝ2 ∧R2 (48)

the canonical spin being

S = S1+ S2. (49)

The two irreducible kernelof theE(3) realizations are

S3
1 S1

tan−1 S2
1

S1
1

α1

S3
2 S2

tan−1 S2
2

S1
2

α2
. (50)

We will construct now, starting from the two previous single-particle realizations ofE(3),
a global canonical realization of asingleE(3) with S given by (49) and with fixed values
of the invariants (as in section 5). Defining a unit vectorR̂ such that:

R̂2 = 1 R̂ · S = 0 {R̂i, R̂j } = 0 (51)
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and making theansatz

R̂ = aR̂1+ bR̂2 (52)

equations (51) are satisfied by the following values ofa andb:

a

b
= − R̂2 · S1

R̂1 · S2

b =
1+

(
R̂2 · S1

R̂1 · S2

)2

− 2(R̂1 · R̂2)

(
R̂2 · S1

R̂1 · S2

) . (53)

Then, theirreducible kernelof theE(3) realization in terms of therelative physicalvariables
πia, ρ

j
a is still given by theschemeof equation (35), ifR is replaced byR̂ (see equation (52)).

This naturally defines the normalizedcommonreference frame:

Ŝ ≡ SS R̂ ξ̂ ≡ Ŝ ∧ R̂. (54)

A canonical completion of thetypical form requires the construction offour new inessential
variables which, together with the single-particleradial variables (πa, π̂a ·ρa), build up the
right number of deegres of freedom. The new variables have to be guessed by exploiting
the geometry of the reference frames (48) whoserelative orientation is not constrained:
actually, theinessentialvariables to be constructed do supply precisely the geometrical
information expressing the arbitrary relative orientation.

First of all, the following scalar functions can be shown to commute with the angleα,
defined inschemeA of equation (35):

R̂1 · R̂ R̂1 · ξ̂ R̂1 · ξ̂2

R̂2 · R̂ R̂2 · ξ̂ R̂2 · ξ̂1

R̂1 · S
1− (R̂1 · R̂2)2

+ 1

2
S R̂2 · S(

R̂2·S1

R̂1·S2

)
((R̂1 · R̂2)2)− 1

− 1

2
S

S1 · ξ̂
R̂1 · S

S2 · ξ̂
R̂1 · S

S1 · S + 1

2
S2

(
R̂2 · S1

R̂1 · S2

)2

S2 · S + 1

2
S2

1−
(
R̂2 · S1

R̂1 · S2

)2
 .

(55)

Then, a possible choice of the remaininginessentialcanonical variables, respecting the
particle-label symmetry, is the following:

p1 = R̂1 ·R p2 = R̂2 ·R

q1 = A1(p1, p2)
(S1− S2) · (R̂1 ∧ R̂2)

2(1− (R̂1 · R̂2)2)
− B1(p1, p2)

R̂1 · ξ̂
R2

q2 = A2(p1, p2)
(S1− S2) · (R̂1 ∧ R̂2)

2(1− (R̂1 · R̂2)2)
− B2(p1, p2)

R̂1 · ξ̂
R2

(56)
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where

A1 = − 1
2(R̂1 · R̂2)A2

B1 = −(R̂1 · R̂2)

(
R̂2 · S1

R̂1 · S2

)2

+ 2

(
R̂2 · S1

R̂1 · S2

)
(1+ (R̂1 · R̂2)

2)− (R̂1 · R̂2)A2

A2 = − 1(
R̂2·S1

R̂1·S2

)
+ (R̂1 · R̂2)

B2 =
1− 2(R̂1 · R̂2)

2−
(
− R̂2·S1

R̂1·S2

)2

1− (R̂1 · R̂2)2
A2.

(57)

Clearly, the involved appearance of the quantitiesqi, pj of equation (56) depends upon the
choice made in equation (51), which in turn depends upon the requirement that theE(3)
invariants have the fixed valueR · R = 1 andR · S = 0. Giving up these conditions,
allows us to get a simpler expression of the vectorR of the globalE(3) in terms of the
single-particle vectorŝR1 andR̂2 and to thereby achieve a clearer geometric description of
the symplectic composition of angular momenta. We put:

R −→N = 1
2(R̂1+ R̂2)

χ = R̂1− R̂2

(58)

so that the invariants ofE(3), now enrolled as canonical variables, become:

I1 =N ·N = 1
2(1+ R̂1 · R̂2) ≡ N 2

I2 =N · S = 1
2(R̂1 · S2+ R̂2 · S1).

(59)

In this situation, the canonicalcompletion of scheme Aof (35) amounts to building a
scheme Bof the complete realization ofE(3) (type 2 with l = k = 2), so that we
have to construct twosupplementaryvariables coupled to the invariants. Furthermore,
the presence of the ‘Abelian’ vectorN entails that thiscomplete realization ofE(3)
contains two sub-realizations ofSO(3) which are just those generated by the ‘external’ or
‘inertial’ and ‘body’ components of the intrinsic angular momentum, respectively (see [25]:
equations (39), (41)), (in group-theoretical termsleft andright translations). Actually, in the
present case, if(k3,k1,k2) are ‘external’ unit axes, their ‘body’ counterparts areN̂ = N

N ,

χ̂ = χ
χ
= (R̂1−R̂2)√

2(1−R̂1·R̂2)
andN̂ ∧ χ̂ , respectively. Then the ‘body’ components of the angular

momentum are:

S̄3 = S · N̂ S̄1 = S · χ̂ S̄2 = S · N̂ ∧ χ̂ . (60)

This gives us a hint at the construction of thesupplementaryvariable canonically conjugated
to S · N̂ , because the searched variable must formally have thesame geometrical structure
as the variable conjugated toS3. By canonical completion, we in fact obtain the following
two pairs of canonical variables:

p1 = S · N̂ = S̄3 = I2 p2 =
√
N ·N = N = I1

q1 = tan−1 S · (N̂ ∧ χ̂)
S · χ̂ = tan−1 S̄

2

S̄1
q2 = (S1− S2) · (N̂ ∧ χ̂)

χ
.

(61)

The differenceS1−S2 between the particle spin vectors appears in the secondsupplementary
variable (q2 in equation (61)). It is easy to check that, ingeometrical (not in group-
theoretical!) terms,q2 has the same relation toN , asα to S.
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In conclusion, thecompleterealization ofE(3) can be summarized as follows

S3 S S · N̂ N
tan−1 S2

S1 tan−1 S(S∧N̂)3
[S∧(S∧N̂)]3

tan−1 S·(N̂∧χ̂)
S·χ̂

(S1−S2)·(N̂∧χ̂)
χ

. (62)

The first three canonical pairs contain a simultaneous canonical description of the ‘external’
and the ‘body’ intrinsic angular momentum. Thegeometricmeaning of the whole set of
canonical variables (in particular that of thesupplementaryvariables) will be made clear
presently. Finally, let us remark in this connection that the geometry of our coordinates
should also provide some hints for solving the problem of extracting the physical degrees
of freedom of the electromagnetic field via differential operators, exploiting the natural
direction Ŝ instead of the usual radiation condition (see [34]).

The final form of the whole set of canonical variables, which are now adapted both to
the constraint structureand to the action of the Poincaré group, is summarized in table 5.

7. Relative variables referred to the intrinsic frame of a canonical realization of
E(3): geometric meaning of the variables

The geometric interpretation of the canonical variables can be made clear by exploiting the
inverse transformation of the one that brings from thequasi-SCT to thetypical form. To
this aim, it is instrumental to decomposeπa andρa in terms of the vectorŝS, R̂ and Ŝ ∧ R̂
(a = 1, . . . , N − 1):

ρa = Aa
S

S + BaR̂ + Ca
S

S ∧ R̂

πa = Da

S

S + EaR̂ + Fa
S

S ∧ R̂.
(63)

The basis vectors and the coefficientsAa,Ba, Ca,Da,Ea, Fa have to be expressed as
functions of the variables appearing in thetypical form (see in particular equation (43)).

For simplicity, we shall work out the calculation for the caseN = 3. First of all, we
introduce the vectors (see scheme (62)):

N = R̂1+ R̂2

2
χ = R̂1− R̂2

2
S = S1+ S2 W = S1− S2

(64)

Table 5. System of three particles: chart adapted to the constraint structureand to the Poincaŕe
group (p1 andp2 are invariants ofE(3) in the case of a realization with no fixed invariants).

k1 k2 k3 ε

z1 z2 z3 T

S3 S π1 π2 ε1 ε2

tan−1 S2

S1 α ρ1 · π̂1 ρ2 · π̂2 τ1 τ2

p1 p2

q1 q2
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which satisfy 
χ · χ = 1−N ·N
N · χ = 0

N · S = −χ ·W
N ·W = −χ · S

(65)

and the Poisson bracket relations†:
{Ni,Nj } = 0

{χi, χj } = 0

{Wi,Wj } = εijkSk.
(66)

Equations (64) provide the relations amongN ,χ,S andW and the single-particle vectors
R̂a andSa. Therefore, since equation (44) gives the expression of the single-particlerelative
variablesπa andρa as functions of the vectorŝRa andSa, the inverse transformation can
be simply obtained by re-expressing the vectorsN ,χ,S andW in terms of the variables
of the typical form.

The relevance of the geometric decomposition obtained by using the orthonormal frame
Ŝ, R̂ and Ŝ ∧ R̂ follows from the fact that these vectors are functions of theirreducible
kernel of the small group of the massive orbits (E(3) hasSO(3) as subgroup). Let us put
(seescheme(62))

α = tan−1 S(S ∧ N̂)3
[S ∧ (S ∧ N̂)]3

β = tan−1 S · (N̂ ∧ χ̂)
S · χ̂

φ = tan−1 S
2

S1

ξ = (S1− S2) · (N̂ ∧ χ̂)
χ

(67)

and define the new angle:

ψ = N · SNS = N̂ · Ŝ. (68)

The geometric setting corresponding to the above definitions is displayed in figures 1 and 2,
in which the frameŜ, R̂, Ŝ ∧ R̂ refers to (49) and (52), while the framêN, χ̂, N̂ ∧ χ̂ is
defined by (58) and subsequent formulae. Finally, we obtain:

N = N cosψŜ +N sinψR̂

χ = (1−N 2)1/2(sinψ cosβŜ − cosψ cosβR̂ + sinβŜ ∧ R̂)

W =
( S
N (1−N 2)1/2

sinψ cosψ cosβ + ξ sinψ sinβ

)
Ŝ

+
(
− S
N (1−N 2)1/2

cosβ sin2ψ + ξ sinβ cosψ

)
R̂

+
(
ξ cosβ + sinβ cosψ

SN
(1−N 2)1/2

)
Ŝ ∧ R̂.

(69)

† Note that these vectors generate the 2-rank groups [N ,S] ≡ E(3), [χ,S] ≡ E(3), [W ,S] ≡ SO(4).
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Figure 1. The φ andα angles, and theS3 component. Note that, as regards sections 6 and 7,
R has to be replaced byN .

Figure 2. Theβ andψ angles, the projectionχξ and theS̄3 component.

These expressions, together with equations (63) and (64) provide the desired inverse
transformation (see (44) forN = z).

8. System ofN particles

Finally, the construction of thetypical form for the system of three particles, gives us a
clue for dealing with a system ofN particles. We will exploit the ‘direct product’ ofN −1
sub-realizations ofE(3) in order to obtain a single realization whosetypical form has the
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Table 6. System of four particles (the first label choice is(ab); p1 andp2 are invariants of
E(3)).

k ε

z T

S3
(ab) S(ab) S3

(c) S(c) π(a) π(b) π(c) εa εb εc

tan−1 S2
(ab)

S1
(ab)

α(ab) tan−1 S2
(c)

S1
(c)

α(c) ρ(a) · π̂(a) ρ(b) · π̂(b) ρ(c) · π̂(c) τa τb τc

p1 (ab) p2 (ab)

q1
(ab) q2

(ab)

correct number ofinessentialvariables.
Since theirreducible kernel of any E(3) realization has two ‘deegres of freedom’,

the construction of a single global realization requires the preliminary choice of an initial
label-pair within theN − 1 possible ones. Then theirreducible kernelof this initial two-
label realizationhas to be combined with the kernel of any of the remaining single-particle
realizations. The variables of the initialtwo-label realizationthat do not belong to the
irreducible kernelbecomeinessentialvariables of athree-label realization, which is being
constructed in the same way as thetwo-label realizationis built up from the single-particle
realization. It is now clear how to iterate the procedure until a single global realization of
E(3) with a (N−1)-labelirreducible kernelis constructed. Note, finally, that this procedure
gives rise to

(
N−1

2

)
different chains of canonical transformations corresponding to

(
N−1

2

)
final

realizations ofE(3).
We shall carry out explicitly the construction of atypical form for a system offour

particles. We begin as usual with table 1 and rewrite the variables of theirreducible kernel
in the ‘direct product’ form†.

S3
(a) S(a)

tan−1 S2
(a)

S1
(a)

α(a)

S3
(b) S(b)

tan−1 S2
(b)

S1
(b)

α(b)

S3
(c) S(c)

tan−1 S2
(c)

S1
(c)

α(c)

The explicit procedure is as follows. First, two labels are selected and the firstirreducible
kernel is constructed (see table 6).

S3
(ab) S(ab)

tan−1 S2
(ab)

S1
(ab)

α

The form ofα obviously depends on the choice of the vectorR̂(ab) of equation (43), which
now satisfies conditions (51).

Then, theirreducible kernelof the three-label realizationis constructed by defining the
two vectors‡ (see equation 58)

N((ab)c) = 1
2(R̂(ab) + R̂(c)) (70)

and

χ((ab)c) = 1
2(R̂(ab) − R̂(c)). (71)

This leads from table 7 to table 8. The angleα of the irreducible kernelis now:

α((ab)c) = tan−1 S[S ∧N((ab)c)]3

[S ∧ [S ∧N((ab)c)]] 3
. (72)

† The inessentialvariables of the single-particle realizations are not listed for simplicity.
‡ Again, the remaining degrees of freedom are realized byinessentialvariables.
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Table 7. System of four particles: chart adapted to the constraint structure (first label choice
((ab)c)).

k ε

z T

S3 S π(a) π(b) π(c) ε1 ε2 ε3

tan−1 S2

S1 α((ab)c) ρ(a) · π̂(a) ρ(b) · π̂(b) ρ(c) · π̂(c) τ1 τ2 τ3

p1 (ab) p2 (ab) p1((ab)c) p2 ((ab)c)

q1
(ab) q2

(ab) q1
((ab)c) q2

((ab)c)

Table 8. System of four particles: chart adapted to the constraint structureand to the Poincaŕe
group (first label choice ((ab)c)).

k

z

S3 S

tan−1 S2

S1 α((ab)c)

π(a) π(b) π(c)

ρ(a) · π̂(a) ρ(b) · π̂(b) ρ(c) · π̂(c)

S(ab) · N̂(ab) N(ab)

tan−1 S(ab)·χ̂(ab)
S(ab)·(N̂(ab)∧χ̂(ab))

(S(a)−S(b))·(N̂(ab)∧χ̂(ab))
χ(ab)

S · N̂((ab)c) N((ab)c)

tan−1 S·χ̂((ab)c)
S·N̂((ab)c)∧χ̂((ab)c)

(S(ab)−S(c))·N̂((ab)c)∧χ̂((ab)c)
χ((ab)c)

The typical form clearly depends on the choice of the chain of labels (see table 8).
Corresponding to each choice of labels, a basic reference frame in the<3 space ofWigner
vectors is defined. The vectorS is shared by any of thetypical forms corresponding to
any possible different chain, while the unit vectorR̂ depends on any given chain according
to equation 43), withα given by equation (72). The

(4−1
2

)
possible reference frames differ

from one another by a spatial rotation of the vectorsR e S ∧R around theS direction.
The rotation angle relating twotypical formsis simply given by the difference between the
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two variables conjugated toS. The geometry is as follows: ifa andb (like R̂a and R̂b)
are two vectors with{ai, aj } = {bi, bj } = 0, from the expressions

αa = tan−1 S(S ∧ a)3
[S ∧ (S ∧ a)]3

αb = tan−1 S(S ∧ b)3
[S ∧ (S ∧ b)]3

(73)

we obtain the angle

αa − αb = tan−1 a · (S ∧ b)
b · (S ∧ (S ∧ b)) . (74)

Of course, equation (74) does not exhaust the description of the difference between any pair
of typical forms: the transformation between theinessential variablesis needed too.
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